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Irreducible Bases in Icosahedral Group Space
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The irreducible bases in the icosahedral group space are calculated explicitly by
reducing the regular representation. The symmetry-adapt ed bases of the system
with I or Ih symmetry can be calculated easily and generally by applying those
irreducible bases to wavefunctions of the system, if they are not vanishing. As
examples, the submatrices of the HuÈ ckel Hamiltonians for carbon-60 and carbon-
240 are recalculated by the irreducible bases.

1. INTRODUCTION

Fullerenes (Kroto, 1998; Huffman, 1991; Pennis, 1991), such as B12H12,

C20H20, and C60, are intriguing cagelike molecules of carbon atoms with
icosahedral symmetry. This discovery (Rohlfing, et al., 1984; Kroto et al.,
1985; Weeks and Harter; 1989) has drawn the attention of chemists and

physicists (Deng and Yang, 1993; Friedberg and Lee, 1992; Chen and Yang,

1993). With the development of experimental techniques in high-resolution

spectroscopy, much new data on vibrational spectra of polyatomic molecules

with the symmetry Ih have been observed and analyzed (Negri and Orlandi,
1996; Olthof et al., 1996; Giannozzi and Baroni, 1994; Schettino et al., 1994;

Gunnarsson et al., 1995; Doye and Wales, 1996; Wang et al., 1996; Tang et
al., 1996; Tang and Huang, 1997). The vibrational modes, the force fields,

and the spin±orbit coupling coefficients for icosahedral molecules have been

studied in some detail (Clougherty and Gorman, 1996; Martõ Ânez-Torres, 1996;

Varga et al., 1996; Fowler and Ceulemans, 1985, 1993).
As is well known, symmetry analysis provides a powerful tool for

classifying energy levels and organizing experimental data. In explaining the
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vibrational spectra of polyatomic molecules, the symmetry-adapted bases

(SAB) play an important role in simplifying the calculations (Lemus and

Frank, 1994; Mo et al., 1996; Chen et al. 1996). The SABs are defined as

the orthogonal bases that belong to given rows of given irreducible representa-

tions of the symmetry group. In such studies, SABs of the system with Ih

symmetry have been widely used. Therefore, the properties of the Ih group

are worth studying in some detail, although the dimension of the Ih group

space is 120.

Early work on the I group was mainly concerned with the construction

of the representations of I subduced by D l of the SO(3) group and the 3j

and 6j symbols (McLellan, 1961; Golding, 1973; Pooler, 1980; Brown,

1987a,b). Liu et al. (1990) enumerated the 60 elements of icosahedral group

I, listed its group table, and calculated the irreducible representation matrices

of all the 60 elements explicitly. The character tables of the point groups

and the double point groups have been listed (Altmann and Herzig, 1994;

Balasubramanian, 1996). Recently, Chen and Ping (1997) constructed the

point-group symmetrized boson representation, and gave the explicit expres-

sions of the SABs for seven important cases of the molecule B12H12.

As another approach, in this paper we will explicitly calculate the irreduc-

ible bases c G
m n in the group spaces of I and Ih by reducing the regular

representation of I:

R c G
m n 5 o

r
c G

r n D G
r m (R), c G

m n R 5 o
r

D G
n r (R) c G

m r , R P I (1)

where D G is an irreducible representation of I, and c G
m n is a combination of

the group elements. Applying those irreducible bases to any function F (x),

if it is not vanishing, one will obtain the SAB c G
m n F (x):

R { c G
m n F (x)} 5 o

r
{ c G

r n F (x)} D G
r m (R) (2)

This is a unified and straightforward way to calculate the SAB of the system

with the Ih symmetry.

By the way, we would like to point out that the rank of group I is two,

not three (McLellan, 1961; Liu et al., 1990; Lomont, 1959). This means that

all 60 elements of I can be expressed as the products of only two generators.

The plan of this paper is as follows. In Section 2 we will give our

notations. In Section 3 the irreducible bases in the I group space are calculated

explicitly, and the irreducible bases of Ih are easily calculated from those of

I. Three examples are given to explain how to calculate the SAB in terms

of these irreducible bases. A short conclusion is given in Section 4.
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2. NOTATIONS AND GENERATORS OF GROUP I

A regular icosahedron is shown in Fig. 1. The vertices on the upper

part are labeled by Aj , 0 # j # 5, and their opposite vertices by Bj. The z

and y axes point from the center O to A0 and the midpoint of A2 B5, respectively.

The group I has 6 fivefold axes, 10 threefold axes, and 15 twofold axes.

One of the fivefold axes is directed along the z axis, and the rest point from

Bj to Aj (1 # j # 5) with the polar angle u 1 and azimuthal angles w (1)
j . The

rotations through 2 p /5 around those fivefold axes are denoted by Tj , 0 # j

# 5. The threefold axes join the centers of two opposite faces. The polar

angles of the first and last 5 axes are denoted by u 2 and u 3, respectively, and

the azimuthal angles by w (2)
j . The rotations through 2 p /3 around those threefold

axes are denoted by Rj , 1 # j # 10. The twofold axes join the midpoints of

two opposite edges. The polar and azimuthal angles of the first, next, and

last 5 axes are u 4, w (1)
j , u 5, w (2)

j , p , and w (3)
j , respectively. The rotations through

p around those twofold axes are denoted by Sj , 1 # j # 15. Those angles

u i and w (i)
j are given as follows:

tan u 1 5 2, tan u 2 5 3 2 ! 5 5 2p 2, tan u 3 5 3 1 ! 5 5 2p 2 2

tan u 4 5 ( ! 5 2 1)/2 5 p, tan u 5 5 ( ! 5 1 1)/2 5 p 2 1 (3)

w (1)
j 5 2( j 2 1) p /5, w (2)

j 5 (2j 2 1) p /5, w (3)
j 5 (4j 2 3) p /10

p 5 h 1 h 2 1, p 2 1 5 1 1 h 1 h 2 1, h 5 exp( 2 i2 p /5)

Fig. 1. Icosahedron with Ih symmetry.
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It is easy to see from Fig. 1 that 12 elements E, S8, S12, S1,

R 6 1
6 , R 7 1

2 , R 6 1
4 , and R 7 1

10 construct a subgroup T. Now, any element R of I
can be expressed as a product of T a

0 and an element R b
6S

c
1S

d
12 of the subgroup T:

R 5 T a
0R

b
6S

c
1S

d
12 (4)

Due to the relations

R6 5 S1T
2
0S1T

4
0, S12 5 R 2

6S1R6 (5)

T0 and S1 are the generators of group I. The rank of I is two.

3. IRREDUCIBLE BASES IN I AND Ih GROUP SPACES

It is convenient to choose the irreducible representations of I such that

the representation matrices of one generator T0 are diagonal. Assume that

the bases F m n in the I group space are the eigenstates of left-action and right-

action of T0:

T0 F m n 5 h m F m n , F m n T0 5 h n F m n

h 5 exp( 2 i2 p /5), m , n mod 5 (6)

The eigenstates can be easily calculated by the projection operator P m (Hamer-

mesh, 1962, p. 113):

F m n 5 c P m RP n , P m 5
1

5 o
2

l 5 2 2
h 2 m l T l

0 (7)

where c is a normalization factor. The choice of the group element R in (7)

will not affect the results except for the factor c. In the following we choose

E, S11, S5, and S10 as the group element R, respectively, and obtain four
independent sets of bases F (i)

m n :

F (1)
m m 5 (E 1 h 2 m T0 1 h 2 2 m T 2

0 1 h 2 m T 3
0 1 h m T 4

0)/ ! 5

F (2)
m m 5 (S11 1 h 2 m S14 1 h 2 2 m S12 1 h 2 m S15 1 h m S13)/ ! 5

F (3)
m n 5 {(S5 1 h 2 m R 2

5 1 h 2 2 m T 4
1 1 h 2 m T4 1 h m R4)

1 h ( m 2 n )(S4 1 h 2 m R 2
4 1 h 2 2 m T 4

5 1 h 2 m T3 1 h m R3)

1 h 2( m 2 n )(S3 1 h 2 m R 2
3 1 h 2 2 m T 4

4 1 h 2 m T2 1 h m R2)

1 h 2 2( m 2 n )(S2 1 h 2 m R 2
2 1 h 2 2 m T 4

3 1 h 2 m T1 1 h m R1) (8)

1 h 2 ( m 2 n )(S1 1 h 2 m R 2
1 1 h 2 2 m T 4

2 1 h 2 m T5 1 h m R5)}/5

F (4)
m n 5 {(S10 1 h 2 m T 3

1 1 h 2 2 m R 2
6 1 h 2 m R9 1 h m T 2

5)
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1 h ( m 2 n )(S9 1 h 2 m T 3
5 1 h 2 2 m R 2

10 1 h 2 m R8 1 h m T 2
4)

1 h 2( m 2 n )(S8 1 h 2 m T 3
4 1 h 2 2 m R 2

9 1 h 2 m R7 1 h m T 2
3)

1 h 2 2( m 2 n )(S7 1 h 2 m T 3
3 1 h 2 2 m R 2

8 1 h 2 m R6 1 h m T 2
2)

1 h 2 ( m 2 n )(S6 1 h 2 m T 3
2 1 h 2 2 m R 2

7 1 h 2 m R10 1 h m T 2
1)}/5

where and hereafter the subscript m denotes 2 m . These bases F (i)
m n should be

combined into the irreducible bases c G
m n that belong to the given irreducible

representation G . The combinations can be determined from the condition

that c G
m n should be the eigenstate of a class operator W, which was called

CSCO-I in Chen and Ping (1997). The eigenvalues a G can be calculated from

the characters in the irreducible representation G [see (3-170) in Hamer-
mesh (1962)]

W 5 o
5

j 5 0
(Tj 1 T 4

j ), W c G
m n 5 c G

m n W 5 a G c G
m n (9)

a A 5 12, a T1 5 4p 2 1, a T1 5 2 4p, a G 5 2 3, a H 5 0

Now we calculate the matrix form of W in the bases F (i)
m n and diagonalize

it. c G
m n are just the eigenvectors of the matrix form of W:

c G
m n 5 N 2 1/2 o

4

i 5 1
Ci F (i)

m n (10)

where N is the normalization factor. In those bases c G
m n , the representation

matrices are diagonal with the diagonal elements h m [see (6)]. In principle,

each c G
m n contains a free phase, and the representation matrices of another

generator S1 depend upon the choice of phases. We choose the phases such

that the representation matrices of S1 are as follows:

D A(S1) 5 1, D T1(S1) 5
1

! 5 1 2 p 2 1 2 ! 2 2 p

2 ! 2 1 ! 2

2 p ! 2 2 p 2 1 2
D T

2(S1) 5
1

! 5 1 2 p ! 2 p 2 1

! 2 2 1 ! 2

p 2 1 ! 2 2 p 2
D G(S1) 5

1

! 5 1
2 1 2 p 2 p 2 1 1

2 p 1 2 1 2 p 2 1

2 p 2 1 2 1 1 2 p

1 2 p 2 1 2 p 2 1 2 (11)
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D H(S1) 5
1

5 1
p 2 2 2p 2 1 ! 6 2p p 2

2p 2 1 p 2 2 ! 6 2 p 2 2 2 2p

! 6 2 ! 6 2 1 ! 6 ! 6

2p 2 p 2 2 ! 6 p 2 2 2p 2 1

p 2 2 2p ! 6 2 2p 2 1 p 2 2 2
where the row (column) indices m of the irreducible representations G are

put in the following order: 0 for A; 1, 0, and 1 for T1; 2, 0, and 2 for T2; 2,

1, 1, and 2 for G; and 2, 1, 0, 1, and 2 for H. The representation matrices
of some irreducible representations of I coincide with those in the subduced

representations of D l of SO(3):

D 0(R) 5 D A(R), D 1(R) 5 D T
1(R), D 2(R) 5 D H(R)

X 2 1D 3(R)X 5 D T
2(R) % D G(R), R P I (12)

X 5 1
0 0 2 ! 2/5 0 0 0 ! 3/5

! 3/5 0 0 2 ! 2/5 0 0 0

0 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

0 0 ! 3/5 0 0 0 ! 2/5

! 2/5 0 0 ! 3/5 0 0 0 2
The normalization factors N and combination coefficients Ci in the

expression (10) of c G
m n are listed in Table I.

The group Ih is the direct product of I and the inversion group {E, P},
where P is the inversion operator. According to the parity, the irreducible

representations of Ih are denoted as G g (even) and G u (odd) with the following

irreducible bases:

c G g
m n 5 2 2 1/2(E 1 P) c G u

m n , c G
m n 5 2 2 1/2(E 2 P) c G

m n (13)

Now we are in the position to construct the symmetry-adapted bases

(SABs). For a given polyatomic molecule with I or Ih symmetry, its vibrational

states are described by the vibration quanta occupying its bonds. Applying
the irreducible bases c G

m n to the vibrational states, we obtain the SABs gener-

ally. The only problem is to determine the actions of group elements R on

the vibrational states according to the geometric meaning of R. In fact, the

action of R only permutes, but does not change the vibration quanta. When

some quanta are equal to each other, some SAB may be vanishing, or linearly
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Table I. Irreducible Bases in the Group Space of I

c G
m n 5 N 2 1/2 o

4

i 5 1

C i F (i)
m n , h 5 exp( 2 i2 p /5), p 5 h 1 h 2 1

f A
00 5 ( F (1)

00 1 F (2)
00 1 ! 5 F (3)

00 1 ! 5 F (4)
00 )/ ! 12

G 5 T1 G 5 T2

m n C1 C2 C3 C4 N m n C1 C2 C3 C4 N

1 1 1 2 p 2 1 2 p 4 2 2 1 2 p 2 p 2 1 4

0 1 2 h 2 1 h 2 2 0 2 h 2 2 2 h 2 1 2

1 1 h 2 2 2 h 2 2p 2 h 2 1p 2 1 4 2 2 2 h h p 2 1 h 2 2p 4

1 0 2 h h 2 2 2 2 0 h 2 2 h 2

0 0 1 2 1 1 2 1 4 0 0 1 2 1 2 1 1 4

1 0 h 2 1 2 h 2 2 2 0 h 2 2 2 h 2 1 2

1 1 h 2 2 h 2p h p 2 1 4 2 2 2 h 2 1 h 2 1p 2 1 h 2p 4

0 1 h 2 h 2 2 2 0 2 h 2 2 h 2

1 1 1 2 p 2 1 2 p 4 2 2 1 2 p 2 p 2 1 4

G 5 G G 5 G

m n C1 C2 C3 C4 N m n C1 C2 C3 C4 N

2 2 1 2 1 1 3 2 1 2 h 2 2p 2 1 2 h 2 1p 3

1 2 2 h 2 1p 2 h 2p 2 1 3 1 1 h 2 2 h 2 h 3

1 2 2 h 2p 2 1 2 h p 3 1 1 1 1 2 1 3

2 2 h h 2 h 2 2 3 2 1 2 h 2 1p 2 h 2p 2 1 3

2 1 h p 2 h 2 2p 2 1 3 2 2 h 2 1 h 2 1 2 h 2 3

1 1 1 1 2 1 3 1 2 2 h 2 2p 2 1 2 h 2 1p 3

1 1 h 2 2 2 h 2 2 h 2 1 3 1 2 2 h p 2 h 2 2p 2 1 3

2 1 2 h 2p 2 1 2 h p 3 2 2 1 2 1 1 3

G 5 H G 5 H

m n C1 C2 C3 C4 N m n C1 C2 C3 C4 N

2 2 ! 5 P 2 2 p 2 12 1 0 h 2 1 h 2 2

1 2 h 2 1p 2 1 2 h 2p 3 2 0 h 2 2 h 2 1 2

0 2 h 2 2 h 2 1 2 2 1 h 2 2p 2 h 2 1p 2 1 3

1 2 h 2p 2 h p 2 1 3 1 1 2 ! 5 h 2 2 h 2p 2 2 2 h p 2 12

2 2 ! 5 h h p 2 h 2 2p 2 2 12 0 1 h h 2 2 2

2 1 h p 2 1 2 h 2 2p 3 1 1 ! 5 p 2 p 2 2 12

1 1 ! 5 p 2 p 2 2 12 2 1 2 h 2 1p 2 1 h 2p 3

0 1 2 h 2 1 2 h 2 2 2 2 ! 5 h 2 1 h 2 1p 2 h 2p 2 2 12

1 1 2 ! 5 h 2 2 2 h 2 2p 2 2 2 h 2 1p 2 12 1 2 2 h 2 2p h 2 1p 2 1 3

2 1 2 h 2p h p 2 1 3 0 2 h 2 h 2

2 0 h 2 h 2 1 2 2 h p 2 1 h 2 2p 3

1 0 2 h 2 h 2 2 2 2 2 ! 5 p 2 2 p 2 12

0 0 ! 5 ! 5 2 1 2 1 12
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dependent on other states. Let us give three examples to explain the general

method of calculating SABs.

Example 1. The eigenvalues and eigenfunctions of the HuÈ ckel Hamilto-

nian for carbon-60. Deng and Yang (1992) calculated this problem by com-

puter. Now we calculate the same problem in terms of the irreducible bases

c G
m n by hand. It is easy to see from Fig. 1 in Deng and Yang (1992) that there

is one-to-two correspondence between their states | a,b,c & and the group ele-
ments R and PR8 of Ih in the following meaning:

R | 1, 0, 1 & 5 PR8 | 1, 0, 1 & 5 | a, b, c & , R and PR8 ® | a, b, c & .

(14)

where R P I and R8 P I. Introduce the new notation for the states

| R & 5 P | R8 & 5 | PR8 & [ | a, b, c & , P | a, b, c & 5 | a, b, c & , (15)

where the correspondence between | a 5 1, b, c & and the elements R and PR8
of Ih is as follows:

| R & 5 | 1, b, c & , | R8 & 5 | 1, b, c & . (16)

R (R8) c 5 1 c 5 2 c 5 3 c 5 4 c 5 5 c 5 6

b 5 0 E (S12) S1(S8) R 2
5(T

2
4) R1(T

3
3) T 4

5(R9) T 2(R
2
7)

b 5 1 T0(S15) R2
1(T

3
4) T 4

1(S9) S2(R
2
8) T3(T

2
5) R2(R10)

b 5 2 T 2
0(S13) T 4

2(R
2
9) T4(T

3
5) R2

2(R6) R3(S10) S3(T
2
1)

b 5 3 T 3
0(S11) T5(R7) R4(R

2
10) T 4

3(T
2
2) S4(T

3
1) R 2

3(S6)

b 5 4 T 4
0(S14) R5(T

2
3) S5(R8) T1(S7) R 2

4(R
2
6) T 4

4(T
3
2)

Substituting (16) into (8), we obtain

P | F (1)
m m & 5 h 2 m | F (2)

m m & , P | F (3)
m n & 5 h 2 m 2 n | F (4)

m n & (17)

Thus, some bases in (13) become vanishing or linearly dependent on other

bases. The independent bases are as follows:

2 2 1/2 | c Ag

00
& 5 | c A

00 & , | c T1g
m 1

& 5 | c T1g
m 1

& , | c T1u
m 1 & 5 2 | c T1u

u1
& , 2 2 1/2 | c T1u

m 0 & 5 | c T1
m 0 &

| c T1g
m 2

& 5 2 | c T1g

m 2
& , | c T2u

m 2 & 5 | c T2u
m 2

& , 2 2 1/2 | c T2u
m 0

& 5 | c T2
m 0 & , | c Gg

m 2
& 5 | c Gg

m 2
& (18)

| c Gg
m 1

& 5 | c Gg

m 1
& , | c Gu

m 2
& 5 2 | c Gu

m 2
& , | c Gu

m 1
& 5 2 | c Gu

m 1
& , | c Hg

m 2
& 5 | c Hg

m 2
&

| c Hg
m 1

& 5 2 | c Hg

m 1
& , 2 2 1/2 | c Hg

m 0
& 5 | c H

m 0
& , | c Hu

m 2
& 5 2 | c Hu

m 2
& , | c Hu

m 1 & 5 | c Hu

m 1
&

where an additional normalization factor 2 2 1/2 has to be introduced when

| c G
m 0 & 5 P | c G

m 0 & or | c G
m 0 & 5 2 P | c G

m 0 &

There are 90 bonds, divided into two types (Deng and Yang, 1992). The

hp bonds separate a hexagon from a pentagon, and the others are called the
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hh bonds. Following the notation in Deng and Yang (1992), the HuÈ ckel

interaction of the 60 hp bonds equal to 2 a , and that of the 30 hh bonds is

equal to ( a 2 2). Now, since the states of C60 are denoted by the elements

R of I, the action of Hamiltonian on the states can be written from (16) and

the figure in Deng and Yang (1992); for example,

H | E & 5 2 a | T0 & 2 a | T 4
0 & 1 ( a 2 2) | S1 &

H | T0 & 5 2 a | E & 2 a | T 2
0 & 1 ( a 2 2) | R 2

1 &
(19)

H | T 4
0 & 5 2 a | E & 2 a | T 3

0 & 1 ( a 2 2) | R5 &

H | S1 & 5 2 a | R1 & 2 a | R 2
5 & 1 ( a 2 2) | E &

We are only interested in the properties of H acting on | E & and vice versa.

The matrix of the Hamiltonian in the irreducible bases (18) is a Hermitian

and block one, which can be calculated by the standard method of group

theory (Hamermesh, 1962). For example, there are two sets of bases | c T1u
m 1 &

and | c T1
m 0 & for the representation T1u:

| c T1u
11 & 5 8 2 1/2 { | F (1)

11 & 2 h 2 | F (2)

11
& 2 p 2 1 | F (3)

11 & 1 p h 2 | F (3)

11
&

2 p | F (4)
11 & 1 p 2 1 h | F (4)

11
& }

5 (200) 2 1/2{ ! 5( | E & 1 h 2 1 | T0 & 1 h | T 4
0 & ) 1 ( 2 p 2 1 1 p) | S1 & 1 ? ? ? }

| c T1
10 & 5 2 2 1/2{ 2 h | F (3)

10 & 1 h 2 2 | F (4)
10 & } 5 (50) 2 1/2{ 2 | S1 & 1 ? ? ? }

(20)

| c T1u
01 & 5 2 2 1 { 2 h 2 1 | F (3)

01 & 2 h | F (3)

01
& 1 h 2 | F (4)

01 & 1 h 2 2 | F (4)

01
& }

5 (10) 2 1{ 2 2 | S1 & 1 ? ? ? }

| c T1
00 & 5 2 2 1 { | F (1)

00 & 2 | F (2)
00 & 1 | F (3)

00 & 2 | F (4)
00 & }

5 (10) 2 1 { ! 5 ( | E & 1 | T0 & 1 | T 4
0 & ) 1 | S1 & 1 ? ? ? }

where we only list the terms of | E & , | T0 & , | T 4
0 & , and | S1 & which are relevant

to the calculation. Comparing the coefficients of the term | E & on both sides

of the equations

H | c T1u
11 & 5 H11 | c T1u

11 & 1 H01 | c T1
10 &

H | c T1
10 & 5 H10 | c

T1u
11 & 1 H00 | c

T1
10 & (21)

H | c T1u
01 & 5 H11 | c T1u

01 & 1 H01 | c T1
00 &

H | c T1
00 & 5 H10 | c

T1u
01 & 1 H00 | c

T1
00 &
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we obtain the submatrix of H for the representation T1u, which is of two

dimensions:

H T1u 5
1

2 ! 5 1 2 a (7 2 ! 5) 1 4 2 4( a 2 2)

2 4( a 2 2) 2 2 a (2 ! 5 2 1) 2 4 2 (22)

E T1u 5 2 a (3 1 ! 5)/4 6
1

4
{18 a 2 (3 2 ! 5) 2 16 a (5 2 ! 5) 1 64}1/2

The advantage of this method is that the eigenfunctions of the Hamiltonian
can be obtained simultaneously.

In the same way we can easily calculate the submatrices of the HuÈ ckel

Hamiltonian for other representations:

H Ag 5 2 a 2 2, H T1g 5 2 a ( ! 5 1 1) /2 1 2,

H T2g 5 a ( ! 5 2 1) /2 1 2

H T2u 5
1

2 ! 5 1 a (7 1 ! 5) 2 4 4( a 2 2)

4( a 2 2) 2 2 a (2 ! 5 1 1) 1 4 2 ,

H Gg 5 1 a ( ! 5 1 1)/2 2 ( a 2 2)

2 ( a 2 2) 2 a ( ! 5 2 1)/2 2 (23)

H Gu 5
1

2 ! 5 1 a ( ! 5 1 1) 1 8 2( a 2 2)

2( a 2 2) a ( ! 5 2 1) 2 8 2 ,

H Hu 5
1

2 ! 5 1 a (7 1 ! 5) 2 4 4( a 2 2)

4( a 2 2) 2 a (7 2 ! 5) 1 4 2
H Hg 5

1

10 1 a (5 ! 5 1 11) 2 12 4( a 2 2) 4 ! 3( a 2 2)
4( a 2 2) 2 a (5 ! 5 2 11) 2 12 2 4 ! 3( a 2 2)

4 ! 3( a 2 2) 2 4 ! 3( a 2 2) 2 22 a 1 4 2
The dimensions of the submatrices H G are one or two except for H Hg,
so that the energy levels of the HuÈ ckel Hamiltonian can be calculated

by hand:

E Ag 5 2 a 2 2, E T1g 5 2 a ( ! 5 1 1)/2 1 2,

E T2g 5 a ( ! 5 2 1)/2 1 2

E T2u 5 2 a (3 2 ! 5)/4 6
1

4
{18 a 2(3 1 ! 5) 2 16 a (5 1 ! 5) 1 64}1/2 (24)

E Gg 5 a /2 6 2 2 1(9 a 2 2 16 a 1 16)1/2,
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E Gu 5 a /2 6 2 2 1( a 2 1 16)1/2

E Hu 5 a /2 6 2 2 1(13 a 2 2 24 a 1 16)1/2

and E Hg is the root of the following equation:

x 3 1 2x 2 1 x ( 2 6 a 2 1 8 a 2 4) 1 ( a 3 2 12 a 2 1 16 a 2 8) 5 0 (25)

The results coincide with that given in Deng and Yang (1992), except for a
misprint in (32) of [Q38 2 and Q3 2 should be switched, but Fig. 2 in Deng

and Yang (1992) is correct].

Example 2. The submatrices of the HuÈ ckel Hamiltonian for carbon-240.

It can be seen from Fig. 1 of Chou and Yang (1993) that, in comparison

with each atom of carbon-60, carbon-240 contains three more carbon atoms

distributed symmetrically around each carbon atom of carbon-60. In addition

to (a, b, c), we introduce a new index l to identify those four carbon atoms.
The carbon atom in the center is labeled by l 5 1, the carbon on the hexagon

is labeled by 2, and the carbons on the two neighbor pentagons are labeled

by 3 and 4, respectively. Each carbon atom corresponds to a state, denoted

by | a,b,c,l & , or by a group element R and l in terms of the generalized

notation in (15):

| R, l & 5 | PR8, s ( l ) & 5 | a, b, c, l & , P | a, b, c, l & 5 | a, b, c, s ( l ) &
(26)

s (1) 5 1, s (2) 5 2, s (3) 5 4, s (4) 5 3

From (8) we have

P | F (1)
m m , l & 5 h 2 m | F (2)

m m , s ( l ) & , P | F (3)
m n , l & 5 h 2 m 2 n | F (4)

m n , s ( l ) & (27)

Following (10), (13), and (18), we are able to combine | F (i)
m n , l & into the

SAB | G , m , t & . For example, we have three independent SAB, for G 5 A1g

and one for G 5 A1u:

| A1g, 0, 1 & 5 | c A
00, 1 & 5 60 2 1/2{ | E,1 & 1 ? ? ? }

| A1g, 0, 2 & 5 | c A
00, 2 & 5 60 2 1/2{ | E, 2 & 1 | T0, 2 & 1 | T 4

0, 2 & 1 ? ? ? }

| A1g, 0, 3 & 5 2 2 1/2{ | c A
00, 3 & 1 | c A

00, 4 & }

5 120 2 1/2{ | E, 3 & 1 | E, 4 & 1 | T 4
0, 3 & 1 | T0, 4 &

(28)
1 | S1, 3 & 1 | S1, 4 & 1 ? ? ? }

| A1u, 0, 1 & 5 2 2 1/2{ | c A
00, 3 & 2 | c A

00, 4 & }

5 120 2 1/2{ | E, 3 & 2 | E, 4 & 1 | T 4
0, 3 & 2 | T0, 4 &

1 | S1, 3 & 2 | S1, 4 & 1 ? ? ? }
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In the basis | R,l & , the matrix of the HuÈ ckel Hamiltonian H is Hermitian.

We are only interested in the property of H acting on the states | E, l & and

vice versa. For bond arrangement (a) we have

H | E, 1 & 5 2 a | E, 3 & 2 a | E, 4 & 1 ( a 2 2) | E, 2 &

H | E, 2 & 5 2 a | T0, 2 & 2 a | T 4
0, 2 & 1 ( a 2 2) | E, 1 &

(29)
H | E, 3 & 5 2 a | E, 1 & 2 a | S1, 4 & 1 ( a 2 2) | T0, 4 &

H | E, 4 & 5 2 a | E, 1 & 2 a | S1, 3 & 1 ( a 2 2) | T 4
0, 3 &

and for bond arrangement (b)

H | E, 1 & 5 2 a | E, 3 & 2 a | E, 4 & 1 ( a 2 2) | E, 2 &

H | E, 2 & 5 2 a | T0, 2 & 2 a | T 4
0, 2 & 1 ( a 2 2) | E, 1 &

(30)
H | E, 3 & 5 2 a | E, 1 & 1 ( a 2 2) | S1, 4 & 2 a | T0, 4 &

H | E, 4 & 5 2 a | E, 1 & 1 ( a 2 2) | S1, 3 & 2 a | T 4
0, 3 &

Therefore, in the expansions of (28) we only need to list 10 relevant states:

| E, 1 & , | E, 2 & , | E, 3 & , | E, 4 & , | T0, 2 &
(31)

| T0, 4 & , | T 4
0, 2 & , | T 4

0, 3 & , | S1, 3 & , | S1, 4 &

From (28)±(30) we obtain the submatrices of the HuÈ ckel Hamiltonian for

the representations A1g, and A1u:

H A1g(a) 5 H A1g(b) 5 1 0 a 2 2 2 ! 2 a
a 2 2 2 2 a 0

2 ! 2 a 0 2 2 2 , (32)

H A1u(a) 5 H A1u(b) 5 2

In the cases A1g and A1u, the submatrices of H are same for both bond

arrangements (a) and (b). There are more SAB belonging to other irreducible

representations. However, the calculations are still simple enough to complete

by hand. In the following we list the independent SAB for each irreducible

representation and the nonvanishing matrix elements of the Hamiltonian.

| T1g, m , l & 5 2 2 1/2{ | c T1
m 1, l & 1 | c T1

m 1
, s ( l ) & }

| T2g, m , l & 5 2 2 1/2{ | c T2
m 2, l & 2 | c T2

m 2
, s ( l ) & }

(33)
| T1g, m , 5 & 5 2 2 1/2{ | c T1

m 0, 3 & 2 | c T1
m 0, 4 & }

| T2g, m , 5 & 5 2 2 1/2{ | c T2
m 0, 3 & 2 | c T2

m 0, 4 & }
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| T1u, m , l & 5 2 2 1/2{ | c T1
m 1, l & 2 | c T1

m 1
, s ( l ) & }

| T2u, m , l & 5 2 2 1/2{ | c T2
m 2, l & 1 | c T2

m 2
, s ( l ) & }

| T1u, m , 5 & 5 2 2 1/2{ | c T1
m 0, 3 & 1 | c T1

m 0, 4 & } (34)

| T2u, m , 5 & 5 2 2 1/2{ | c T2
m 0, 3 & 1 | c T2

m 0, 4 & }

| T1u, m , 6 & 5 | c T1
m 0, 1 & , | T2u, m , 6 & 5 | c T2

m 0, 1 & ,

| T1u, m , 7 & 5 | c T1
m 0, 2 & , | T2u, m , 7 & 5 | c T2

m 0, 2 & ,

where l runs from 1 to 4, and s ( l ) is given in (26). Since the submatrices

of the Hamiltonian are all Hermitian, we only list the nonvanishing matrix

elements in the up-triangle part (the row index is not larger than the col-

umn index):

H T1g(a)22 5 H T1g(b)22 5 H T1u(a)22 5 H T1u(b)22 5 2 a p

H T1g(a)33 5 H T1g(a)44 5 2 H T1u(a)33 5 2 H T1u(a)44 5 a p / ! 5

H T1g(b)33 5 H T1g(b)44 5 2 H T1u(b)33 5 2 H T1u(b)44 5 2 ( a 2 2)p / ! 5

H T1g(a)55 5 2 H T1u(a)55 5 2 ( a 2 2) 1 a / ! 5

H T1g(b)55 5 2 H T1u(b)55 5 a 2 ( a 2 2)/ ! 5

H T1u(a)77 5 H T1u(b)77 5 2 2 a

H T1g(a)12 5 H T1g(b)12 5 H T1u(a)12 5 H T1u(b)12 5 H T1u(a)67

5 H T1u(b)67 5 a 2 2 (35)

H T1g(a)13 5 H T1g(a)14 5 H T1g(b)13 5 H T1g(b)14 5 H T1u(a)13 5 H T1u(a)14

5 H T1u(b)13 5 H T1u(b)14 5 2 a

H T1g(a)34 5 H T1u(a)34 5 ( a 2 2) h 2 1 1 a p 2 1 / ! 5

H T1g(b)34 5 H T1u(b)34 5 2 a h 2 1 2 ( a 2 2)p 2 1 / ! 5

2 H T1g(a)35 5 H T1g(a)45 5 H T1u(a)35 5 H T1u(a)45 5 a ! 2/5

2 H T1g(b)35 5 H T1g(b)45 5 H T1u(b)35 5 H T1u(b)45 5 2 ( a 2 2) ! 2/5

H T1u(a)56 5 H T1u(b)56 5 2 a ! 2

After the replacement of ! 5 by 2 ! 5 from the submatrices for the T1 represen-

tation, we obtain those for T2.
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For the representations G and H we have

| Gg , m , l & 5 2 2 1/2{ | c G
m 2, l & 1 | c G

m 2, s ( l ) & }

| Gu , m , l & 5 2 2 1/2{ | c G
m 2, l & 2 | c G

m 2, s ( l ) & }
(36)

| Gg , m , 4 1 l & 5 2 2 1/2{ | c G
m 1, l & 1 | c G

m 1, s ( l ) & }

| Gu , m , 4 1 l & 5 2 2 1/2{ | c G
m 1, l & 2 | c G

m 1, s ( l ) & }

H Gg(a)22 5 H Gg(b)22 5 H Gu(a)22 5 H Gu(b)22 5 a p 2 1

H Gg(a)66 5 H Gg(b)66 5 H Gu(a)66 5 H Gu(b)66 5 2 a p

H Gg(a)33 5 H Gg(a)44 5 2 H Gg(a)77 5 2 H Gg(a)88

5 2 H Gu(a)33 5 2 H Gu(a)44 5 H Gu(a)77 5 H Gu(a)88

5 2 a / ! 5

H Gg(b)33 5 H Gg(b)44 5 2 H Gg(b)77 5 2 H Gg(b)88

5 2 H Gu(b)33 5 2 H Gu(b)44 5 H Gu(b)77 5 H Gu(b)88

5 ( a 2 2)/ ! 5

H Gg(a)12 5 H Gg(a)56 5 H Gu(a)12 5 H Gu(a)56

5 H Gg(b)12 5 H Gg(b)56 5 H Gu(b)12 5 H Gu(b)56 5 a 2 2

H Gg(a)13 5 H Gg(a)14 5 H Gg(a)57 5 H Gg(a)58 5 H Gu(a)13 5 H Gu(a)14

(37)5 H Gu(a)57 5 H Gu(a)58 5 H Gg(b)13 5 H Gg(b)14

5 H Gg(b)57 5 H Gg(b)58 5 H Gu(b)13 5 H Gu(b)14

5 H Gu(b)57 5 H Gu(b)58 5 2 a

H Gg(a)34 5 H Gu(a)34 5 ( a 2 2) h 2 2 1 a / ! 5

H Gg(b)34 5 H Gu(b)34 5 2 a h 2 2 2 ( a 2 2)/ ! 5

H Gg(a)78 5 H Gu(a)78 5 ( a 2 2) h 2 1 2 a / ! 5

H Gg(b)78 5 H Gu(b)78 5 2 a h 2 1 1 ( a 2 2)/ ! 5

H Gg(a)37 5 H Gg(a)48 5 2 H Gu(a)37 5 2 H Gu(a)48 5 a p 2 1 / ! 5

H Gg(b)37 5 H Gg(b)48 5 2 H Gu(b)37 5 2 H Gu(b)48 5 2 ( a 2 2)p 2 1 / ! 5

H Gg(a)38 5 H Gg(a)47 5 H Gu(a)38 5 H Gu(a)47 5 a p / ! 5
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H Gg(b)38 5 H Gg(b)47 5 H Gu(b)38 5 H Gu(b)47 5 2 ( a 2 2)p / ! 5

| Hg , m , l & 5 2 2 1/2 { | c H
m 2, l & 1 | c H

m 2, s ( l ) & }

| Hu , m , l & 5 2 2 1/2{ | c H
m 2, l & 2 | c H

m 2, s ( l ) & }

| Hg , m , 4 1 l & 5 2 2 1/2 { | c H
m 1, l & 2 | c H

m 1, s ( l ) & }

| Hu , m , 4 1 l & 5 2 2 1/2 { | c H
m 1, l & 1 | c H

m 1, s ( l ) & } (38)

| Hg , m , 9 & 5 2 2 1/2{ | c H
m 0, 3 & 1 | c H

m 0, 4 & }

| Hu , m , 9 & 5 2 2 1/2{ | c H
m 0, 3 & 2 | c H

m 0, 4 & }

| Hg , m , 10 & 5 | c H
m 0, 1 &

| Hg , m , 11 & 5 | c H
m 0, 2 &

H Hg(a)22 5 H Hg(b)22 5 H Hu(a)22 5 H Hu(b)22 5 a p 2 1

H Hg(a)66 5 H Hg(b)66 5 H Hu(a)66 5 H Hu(b)66 5 2 a p

H Hg(a)33 5 H Hg(a)44 5 2 H Hu(a)33 5 2 H Hu(a)44 5 2 a p 2/5

H Hg(b)33 5 H Hg(b)44 5 2 H Hu(b)33 5 2 H Hu(b)44 5 ( a 2 2) p 2/5

H Hg(a)77 5 H Hg(a)88 5 2 H Hu(a)77 5 2 H Hu(a)88 5 2 a p 2 2 /5

H Hg(b)77 5 H Hg(b)88 5 2 H Hu(b)77 5 2 H Hu(b)88 5 ( a 2 2) p 2 2 /5

H Hg(a)99 5 2 H Hu(a)99 5 ( a 2 2) 1 a /5

H Hg(b)99 5 2 H Hu(b)99 5 2 a 2 ( a 2 2)/5

H Hg(a)11,11 5 H Hg(b)11,11 5 2 2 a

H Hg(a)12 5 H Hg(a)56 5 H Hg(a)10,11 5 H Hu(a)12 5 H Hu(a)56

5 H Hg(b)12 5 H Hg(b)56 5 H Hg(b)10,11 5 H Hu(b)12 (39)

5 H Hu(b)56 5 a 2 2

H Hg(a)13 5 H Hg(a)14 5 H Hg(a)57 5 H Hg(a)58 5 H Hu(a)13 5 H Hu(a)14

5 H Hu(a)57 5 H Hu(a)58 5 H Hg(b)13 5 H Hg(b)14

5 H Hg(b)57 5 H Hg(b)58

5 H Hu(b)13 5 H Hu(b)14 5 H Hu(b)57 5 H Hu(b)58 5 2 a

H Hg(a)34 5 H Hu(a)34 5 ( a 2 2) h 2 2 2 a p 2 2 /5

H Hg(b)34 5 H Hu(b)34 5 2 a h 2 2 1 ( a 2 2)p 2 2 /5



2150 Dong, Hou, Xie, and Ma

H Hg(a)78 5 H Hu(a)78 5 ( a 2 2) h 2 1 2 a p 2/5

H Hg(b)78 5 H Hu(b)78 5 2 a h 2 1 1 ( a 2 2)p 2/5

H Hg(a)37 5 H Hg(a)48 5 2 H Hu(a)37 5 2 H Hu(a)48 5 2 a p /5

H Hg(b)37 5 H Hg(b)48 5 2 H Hu(b)37 5 2 H Hu(b)48 5 2 2( a 2 2)p /5

H Hg(a)38 5 H Hg(a)47 5 H Hu(a)38 5 H Hu(a)47 5 2 2 a p 2 1 /5

H Hg(b)38 5 H Hg(b)47 5 H Hu(b)38 5 H Hu(b)47 5 2( a 2 2) p 2 1 /5

H Hg(a)39 5 H Hg(a)49 5 2 H Hg(a)79 5 2 H Hg(a)89

5 2 H Hu(a)39 5 H Hu(a)49 5 H Hu(a)79 5 2 H Hu(a)89

5 2 a ! 6/5

H Hg(b)39 5 H Hg(b)49 5 2 H Hg(b)79 5 2 H Hg(b)89

5 2 H Hu(b)39 5 H Hu(b)49 5 H Hu(b)79 5 2 H Hu(b)89

5 ( a 2 2) ! 6/5

H Hg(a)9,10 5 H Hg(b)9,10 5 2 a ! 2

The secular equations can be calculated by a standard program in Mathe-

matica, and coincide with those given in Chou and Yang (1993), except for

one dropped zero there. The coefficient of the term l 6 a 5 in Q5 1 is 100, not 10.

Example 3. The symmetry-adapted bases of B12H12. A state in B12H12

is described by the vibration quanta in the 12 bonds. Those numbers of the

vibration quanta are denoted by nj and mj for the bonds OA j and OB j , 0 #
j # 5, respectively. Applying the irreducible bases c G

m n on the states, we

obtain the SAB as follows:

c G
m n | n0n1n2n3n4n5m0m1m2m3m4m5 & (40)

where the action of a group element R of I on the state can be calculated
from the definition of R and from Fig. 1. For example,

A0, A1, A2, A3, A4, A5 ®
T0

A0, A2, A3, A4, A5, A1

A0, A1, A2, A3, A4, A5 ®
S11

B0, B4, B3, B2, B1, B5

A0, A1, A2, A3, A4, A5 ®
S5

A5, A4, B2, B3, A1, A0

A0, A1, A2, A3, A4, A5 ®
S10

B3, A5, B2, B0, B4, A1
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Under the applications of T0, S11, S5, and S10, the state

| n0n1n2n3n4n5m0m1m2m3m4m5 & becomes

T0: | n0n5n1n2n3n4m0m5m1m2m3m4 &

S11: | m0m4m3m2m1m5n0n4n3n2n1n5 &
(41)

S5: | n5n4m2m3n1n0m5m4n2n3m1m0 &

S10: | m3n5m2m0m4n1n3m5n2n0n4m1 &

When 12 quanta are all different from each other, we obtain 60 SABs that

are divided into 16 sets with given irreducible representations. If some quanta

are equal to each other, the number of independent sets may decrease. Since
the dimensions of the representations are less than 60 for the seven important

cases discussed in Chen and Ping (1997), those representations were called

nonregular (Chen and Ping, 1997).

4. CONCLUSION

The symmetry-adapted bases are very useful in calculating the eigenval-
ues and eigenstates of a Hamiltonian with given symmetry. From the irreduc-

ible bases in the group space of the symmetry group of the system, the SABs

can be calculated generally and simply. This is a standard method in group

theory (Hamermesh, 1962), and is widely used in problems of vibrations of

a polyatomic molecule (Lemus and Frank, 1994; Ma et al., 1996; Chen et
al., 1996). The explicit form of the irreducible bases of the I group space

will be useful in future calculations for molecules with I and Ih symmetry.
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